The generator matrix 1 1 1 1 1 1 1 1 1 1 0 0 X 1 1 0 0 1 X X 1 X 1 0 1 1 X+1 X X+1 X X+1 0 0 X+1 0 X+1 1 X 1 1 X+1 X 1 1 1 0 X+1 X X+1 1 0 0 0 0 X+1 1 X 1 0 X+1 0 X+1 0 1 X 0 1 1 1 1 1 1 X+1 X X X+1 X X 0 0 X 0 X+1 1 1 1 X+1 1 1 1 1 X+1 0 X+1 X+1 0 X X+1 1 1 X+1 1 0 0 0 0 X 0 0 0 0 X 0 X X X 0 X X X X+1 1 1 1 1 1 1 X+1 X X+1 0 0 X 0 0 X 0 0 1 1 1 X+1 X+1 0 X 1 0 X X+1 1 X X+1 0 X X+1 1 0 0 0 0 0 0 X X 0 0 X X 1 1 X+1 1 1 0 0 X+1 1 X 1 X X+1 0 generates a code of length 26 over Z2[X]/(X^2) who´s minimum homogenous weight is 17. Homogenous weight enumerator: w(x)=1x^0+82x^17+195x^18+340x^19+529x^20+714x^21+960x^22+1208x^23+1479x^24+1678x^25+1762x^26+1798x^27+1638x^28+1326x^29+1012x^30+670x^31+405x^32+280x^33+163x^34+78x^35+41x^36+16x^37+4x^38+2x^39+3x^40 The gray image is a linear code over GF(2) with n=52, k=14 and d=17. This code was found by an older version of Heurico in 0 seconds.